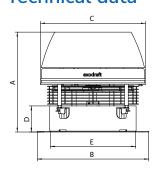
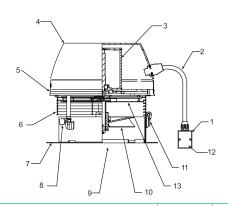
Chimney fan

RSHT


High temperature resistant Exodraft fan type RSHT is a specially designed flue gas fan with horizontal discharge. It is fitted to the termination point of the chimney and there creating a negative pressure in the exhaust duct or in the chimney. The stainless steel and cast aluminium housing ensure the RSHT very high corrosion resistantance. All the screws and bolts are made of stainless steel and so is the centrifugal impeller which has a very low vibration level.


The cooling wheel, patented by Exodraft, allows the fan:

- to work reliably in continuous operation with temperatures up to 500 °C
- to work in peak temperatures of up to 700 °C in 3 minutes

Technical data

- 1. Capacitor and repair switch box
- 2. Conduit/cord
- 3. Motor
- 4. Motor housing
- 5. Motor plate
- 6. Bird screen
- 7. Base plate
- 8. Locking handle
- 9. Inlet
- 10. Axial vane
- 11. Hinge
- 12. Capacitor (inside box)
- 13. Cooling wheel

Model		Motor	data		Weight	Dimension [mm]					
Modet	rpm	V	Amp	kW*	kg	Α	BxB	C [Ø]	D	E [Ø]	
RSHT009-41	1350	1 x 230	0.26	0.06	12	298	296	275	75	220	
RSHT012-41	1350	1 x 230	0.55	0.09	15	325	364	344	85	280	
RSHT014-41	1350	1 x 230	1.00	0.19	19	372	422	395	100	330	
RSHT016-41	1350	1 x 230	1.90	0.31	22	400	478	441	100	380	

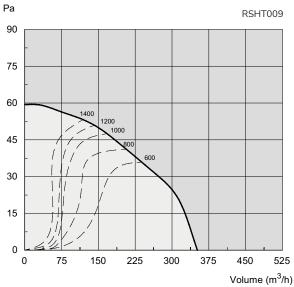
*Power consumption at ambient temperature of 20 $^{\circ}$ C The RPM of the above fan models are infinitely adjustable Motor protection IP rating IP54 Insulation class F

Sound data

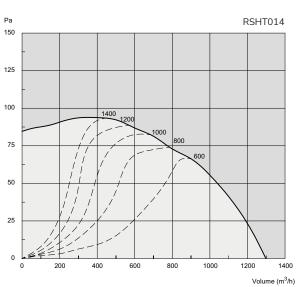
Model				Lw [dB]				L alD [A]
Model	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	Lp dB [A]
RSHT009-41	66	61	63	57	58	57	51	37
RSHT012-41	72	74	71	65	66	62	54	33
RSHT014-41	80	76	72	70	71	68	61	49
RSHT016-41	84	81	75	74	73	70	65	52

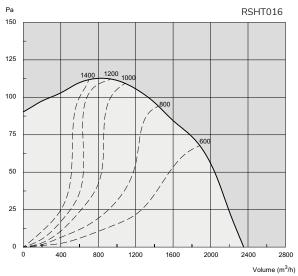
Tolerance +/- 3 dB.

Lw = sound effect level dB (reference: 1 pW)


Lp = sound pressure level dB [A] at 10 m distance from the fan at half spheric sound distribution

Lp (5 m) = Lp (10 m) + 6 dB


Lp (20 m) = Lp (10 m) - 6 dB



Capacity diagrams

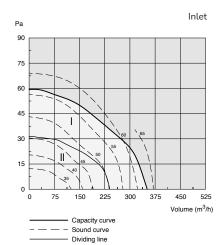
----- Specific Fan Power (SFP) curve
——— Capacity curve

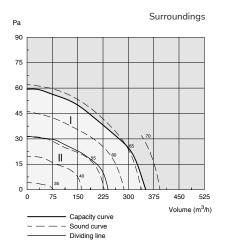
SFP

SFP = (joule/m³) P1 = consumption (watt) qv = flow (m³/h) $P1 = \frac{SFP \times qv}{3600}$

Capacity curve

The capacity diagrams are measured with a flue gas temperature of 20 °C. The fan's capacity changes with the temperature of the flue gases. The correction of the capacity can be calculated using the following equation:


 $Ps_{20} = Ps_t x$ (273 + t) Ps = static pressure


t = temperature measured in °C

Example: (RSHT012)

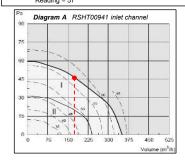
System demand: 600 m3/h and 32 Pa at 180 °C Fan selection: 600 m3/h and 50 Pa at 20 °C

			Table	1					
Correction factors for calcul	lating soun	d output in	the first o	ctave ban	d to extrac	tor channe	el and surr	oundings.	[dB]
	Area	63Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz
Inlet channel (K _w)	- 1	16	13	3	-6	-12	-13	-18	-26
met chamilei (KW)	=	18	12	1	-5	-8	-13	-18	-23
Surroundings (K _W)	_	2	1	-4	-2	-8	-7	-8	-14
Surroundings (KW)	-	12	8	-1	-2	-7	-10	-10	-13

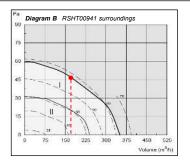
Table 2											
Correction factors for calculating A-weighed sound pressure to surroundings [dB(A)]											
	Area	10m									
Pressure (K _{DA})	1	-28									
i lessure (ixpA)	II	-28									

Table 3											
Example: Sound power output level for inlet channel [dB] = (Readings in Diagram A) + (Correction factor in Table 1)											
Sound power output to inlet	Area	63Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz		
channel in the	1	73	70	60	51	45	44	39	31		
first octave band (L _{W1})	ll l	-	-	-	-	-	-	-	-		

Table 4											
Example: Sound power output level for surroundings [dB] = (Readings in Diagram B) + (Correction factor in Table 1)											
Sound power output to	Area	63Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz		
surroundings in the	- 1	65	64	59	61	55	56	55	49		
first octave band (L _{w3})	ll l	-	-	-	-	_	_	-	_		

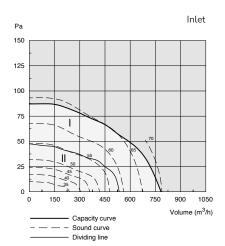

Table 5										
Example: Sound pressure to surroundings [dB(A)] = (Readings in Diagram B) + (Correction factor in Table 2) Every time that distance doubles another 6 dB is withdrawn. Example: 20m = 63 - 28 - 6=29										
A-weighed sound pressure in ()	Area	10m	20m	40m	80m					
meters distance (L _{nA3})		35	29	23	17					
meters distance (L _{pA3})	=	ı	ı	ı	ı					

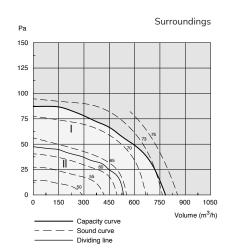
 $K_{W^{\ast}}$ Correction factor for calculating sound output in the first octave band. $K_{oA^{\ast}}$ Correction factor for calculating A-weighed sound pressure.


 L_{W1} : Sound output level for inlet channel L_{W3} : Sound output level to surroundings L_{pA3} : Sound pressure level dB(A) at a distance of 10 metres from

 L_{pA3} . Sound pressure level dB(A) at a distance of 10 metres from hemi-spherical sound dissipation in free field and with insulated connection ducts..

Example: For the values in *Table 3* is read the factor (L_{WA1}) in *Diagram A* at 2/3 of max. flow.
2/3 of 250 M³/h = 167 M³/h
Reading = 57




Example: For the values in *Table 4* and *Table 5* is read the factor (L_{WA3}) in *Diagram B* at 2/3 of max. flow. 2/3 of 250 M³/h = 167 M³/h Reading = 63

I: Upper operating area.
II: Lower operating area.
L_{WA1} can be read from the curve diagram.
L_{WA3} can be read from the curve diagram.

			Table	1					
Correction factors for calcul	ating soun	d output in	the first o	ctave ban	d to extra	ctor channe	el and surr	oundings.	[dB]
	Area	63Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz
Inlet channel (K _w)	- 1	15	12	3	-7	-11	-14	-17	-23
illet charilei (N _W)	II .	18	12	2	-5	-9	-13	-22	-29
Surroundings (K _W)		0	-1	1	-2	-8	-7	-11	-19
Surroundings (KW)	II	8	6	4	-5	-8	-9	-13	-18

Table 2											
Correction factors for calculating A-weighed sound pressure to surroundings [dB(A)]											
	Area	10m									
Pressure (K _{pA})	I	-28									
ressure (rcpA)		-28									

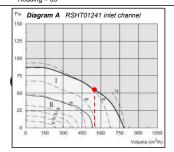
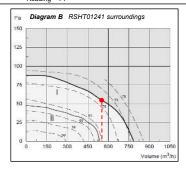
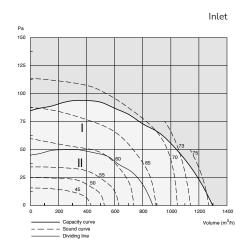
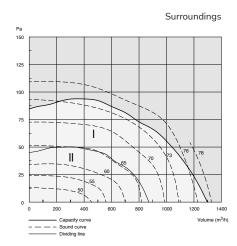

Table 3												
Example: Sound power output level for inlet channel [dB] = (Readings in Diagram A) + (Correction factor in Table 1)												
Sound power output to inlet	Area	63Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz			
channel in the	- 1	80	77	68	58	54	51	48	42			
first octave band (L _{W1})	II	-	-	-	-	-	-	-	-			

Table 4											
Example: Sound power output level for surroundings [dB] = (Readings in Diagram B) + (Correction factor in Table 1)											
Sound power output to	Area	63Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz		
surroundings in the		71	70	72	69	63	64	60	52		
first octave band (L _{W3})	II	-	-	-	-	-	-	-	-		


Table 5										
Example: Sound pressure to surroundings [dB(A)] = (Readings in Diagram B) + (Correction factor in Table 2) Every time that distance doubles another 6 dB is withdrawn. Example: 20m = 71 - 28 - 6=37										
A-weighed sound pressure in ()	Area	10m	20m	40m	80m					
meters distance (L _{nA3})		43	37	31	25					
meters distance (L _{pA3})	l l	_	_	_	_					

- $\ensuremath{\mbox{K}}_{\mbox{\scriptsize W}}\!\!:$ Correction factor for calculating sound output in the first octave band.
- $\mbox{K}_{\mbox{\tiny DA}}\!\!:$ Correction factor for calculating A-weighed sound pressure.
- L_{W1} : Sound output level for inlet channel
- L_{W3} : Sound output level to surroundings L_{pA3} : Sound pressure level dB(A) at a distance of 10 metres from hemi-spherical sound dissipation in free field and with insulated connection ducts...





Example: For the values in *Table 4* and *Table 5* is read the factor (L_{WAS}) in *Diagram B* at 2/3 of max. flow. 2/3 of 825 M 3/h = 550 M 3/h Reading = 71

- I: Upper operating area.
- II: Lower operating area. L_{WA1} can be read from the curve diagram. L_{WA3} can be read from the curve diagram.

			Table	1							
Correction factors for calculating sound output in the first odtave band to extractor channel and surroundings. [dB]											
	Area	63Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz		
Inlet channel (K _W)		14	13	3	-7	-9	-13	-17	-20		
illet Charlie (K _W)	ll l	17	11	2	-2	-11	-17	-25	-29		
Surroundings (K _W)		4	3	-1	-5	-7	-6	-9	-16		
	II	11	5	1	-2	-8	-9	-12	-18		

Table 2										
Correction factors for calculating A-weighed sound pressure to surroundings [dB(A)]										
	Area	10m								
Pressure (K _{DA})		-28								
riessule (N _{pA})		-28								

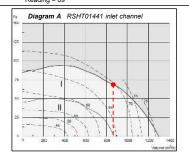
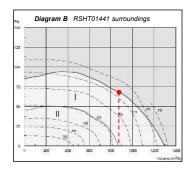

	Table 3										
Example: Sound power output level for inlet channel [dB] = (Readings in Diagram A) + (Correction factor in Table 1)											
Sound power output to inlet	Area	63Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz		
channel in the		83	82	72	62	60	56	52	49		
first octave band (L _{W1})	II	-	-	-	-	-	-	-	-		

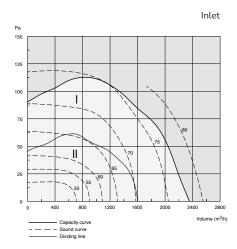
Table 4												
Example: Sound power output level for surroundings [dB] = (Readings in Diagram B) + (Correction factor in Table 1)												
Sound power output to	Area	63Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz			
surroundings in the		78	77	73	69	67	68	65	58			
first octave band (L _{W3})	=	-	-	-	-		-	-	-			

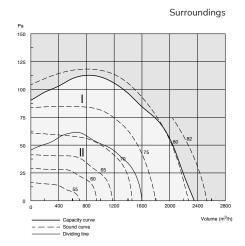

Table 5											
Example: Sound pressure to surroundings [dB(A)] = (Readings in Diagram B) + (Correction factor in Table 2) Every time that distance doubles another 6 dB is withdrawn. Example: 20m = 74 - 28 - 6=40											
A-weighed sound pressure in ()	Area	10m	20m	40m	80m						
meters distance (L _{nA3})		46	40	34	28						
meters distance (L _{pA3})	II	-	-	-	-						

- L_{W1} : Sound output level for inlet channel
- L_{w3} : Sound output level to surroundings L_{nA3} : Sound pressure level dB(A) at a distance of 10 metres from hemi-spherical sound dissipation in free field and with insulated connection ducts..

Example: For the values in *Table 3* is read the factor (L_{WA1}) in *Diagram A* at 2/3 of max. flow. 2/3 of 1300 M³/h = 867 M³/h Reading = 69

Example: For the values in Table~4 and Table~5 is read the factor (L_{WA3}) in Diagram~B at 2/3 of max. flow. 2/3 of 1300 M 3 /h = 867 M 3 /h Reading = 74




- K_W: Correction factor for calculating sound output in the first octave band.
- $\mathbf{K}_{\mathrm{pA}}\!\!:$ Correction factor for calculating A-weighed sound pressure.

I: Upper operating area.

II: Lower operating area. L_{WA1} can be read from the curve diagram. L_{WA3} can be read from the curve diagram.

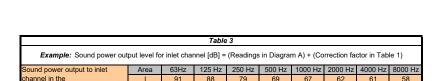


	Table 1										
Correction factors for calculating sound output in the first octave band to extractor channel and surroundings. [dB]											
	Area	63Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz		
Inlet channel (K _W)	- 1	15	12	3	-7	-9	-14	-15	-18		
illet chamler (KW)	II	18	11	3	-6	-9	-18	-23	-29		
Surroundings (K _W)	- 1	5	4	1	-5	-6	-7	-10	-15		
	II	9	4	4	-4	-8	-11	-15	-21		

	Table 2										
Correction factors for calculating A-weighed sound pressure to surroundings [dB(A)]											
	Area	10m									
Pressure (K _{nA})	1	-28									
riessule (K _{pA})	ll l	-28									

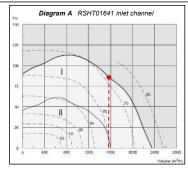
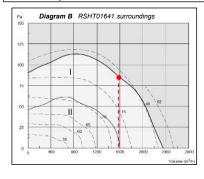

	Table 4										
Example: Sound power output level for surroundings [dB] = (Readings in Diagram B) + (Correction factor in Table 1)											
Sound power output to	Area	63Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz		
surroundings in the		83	82	79	73	72	71	68	63		
first octave band (L _{W3})	II	-	-	-	-	-	-	-	-		

Table 5										
Example: Sound pressure to surroundings [dB(A)] = (Readings in Diagram B) + (Correction factor in Table 2) Every time that distance doubles another 6 dB is withdrawn. Example: 20m = 78 - 28 - 6=44									2)	
A watehad sound pressure in ()	Area	10m	20m	40m	80m					
A-weighed sound pressure in () meters distance (L _{DA3})		50	44	38	32					
meters distance (L _{pA3})	II	-	-	-	-					


 $K_{W^{\prime}}$ Correction factor for calculating sound output in the first octave band. $K_{pA^{\prime}}$ Correction factor for calculating A-weighed sound pressure.

 $L_{W1}\colon$ Sound output level for inlet channel $L_{W3}\colon$ Sound output level to surroundings $L_{pA3}\colon$ Sound pressure level dB(A) at a distance of 10 metres from hemi-spherical sound dissipation in free field and with insulated connection ducts..

Example: For the values in *Table 3* is read the factor (L_{WA1}) in *Diagram A* at 2/3 of max. flow. 2/3 of 2375 M³/h = 1583 M³/h Reading = 76

Example: For the values in *Table 4* and *Table 5* is read the factor (L_{WAS}) in *Diagram B* at 2/3 of max. flow. 2/3 of 2375 M³/h = 1583 M³/h Reading = 78

I: Upper operating area.
II: Lower operating area.
L_{WA1} can be read from the curve diagram.
L_{WA3} can be read from the curve diagram.

DS_RSHT_UK ny | 121223 | Subject to technical changes and typographical errors | Exodraft a/s | www.exdraft.com